

ТРАНСФОРМАТОРЫ ТОКА ТЗРЛ

Руководство по эксплуатации 1ГГ.766.014 РЭ Настоящее руководство по эксплуатации (РЭ) содержит сведения о назначении, конструкции, характеристиках трансформаторов тока ТЗРЛ (далее - «трансформаторы»), предназначенных для внутрироссийских поставок, для атомных станций (АС), и указания, необходимые для правильной их эксплуатации.

1 Нормативные ссылки

1.1 В настоящем руководстве по эксплуатации использованы ссылки на следующие стандарты:

ГОСТ 9.014-78 ЕСЗКС. Временная противокоррозионная защита изделий. Общие требования.

ГОСТ 3134-78 Уайт-спирит. Технические условия.

ГОСТ 7746-2015 Трансформаторы тока. Общие технические условия.

ГОСТ 8865-93 Системы электрической изоляции. Оценка нагревостойкости и классификация.

ГОСТ 10877-76 Масло консервационное К-17. Технические условия.

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды.

ГОСТ 15543.1-89 Изделия электротехнические и другие технические изделия. Общие требования в части стойкости к климатическим внешним воздействующим факторам.

ГОСТ 23216-78 Изделия электротехнические. Общие требования к хранению, транспортированию, временной противокоррозионной защите и упаковке.

ГОСТ 28779-90 Материалы электроизоляционные твердые. Методы определения воспламеняемости под воздействием источника зажигания.

ГОСТ 30631-99 Общие требования к машинам, приборам и другим техническим изделиям в части стойкости к механическим внешним воздействующим факторам при эксплуатации.

ГОСТ 32137-2013 Совместимость технических средств электромагнитная. Технические средства для атомных станций. Требования и методы испытаний.

ГОСТ 32144-2013 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах элек-

троснабжения общего назначения.

ГОСТ 33757-2016 Поддоны плоские деревянные. Технические условия.

ГОСТ Р 50648-94 Совместимость технических средств электромагнитная. Устойчивость к магнитному полю промышленной частоты. Технические требования и методы испытаний.

ГОСТ Р 51318.11-2006 Совместимость технических средств электромагнитная. Промышленные, научные, медицинские и бытовые (ПНМБ) высокочастотные устройства. Радиопомехи индустриальные. Нормы и методы измерений.

РД 34.45-51-300-97 Объем и нормы испытаний электрооборудования.

СТО 34.01-23.1-001-2017 Объем и нормы испытаний электрооборудования

Правила технической эксплуатации электрических станций и сетей Российской Федерации.

Правила по охране труда при эксплуатации электроустановок (от 15.12.2020 г. № 903н).

Правила технической эксплуатации электроустановок потребителей.

Правила устройства электроустановок. Седьмое издание.

НП-001-15 Общие положения обеспечения безопасности атомных станций.

НП-031-01 Нормы проектирования сейсмостойких атомных станций.

2 Требования безопасности

2.1 При проведении всех работ должны выполняться правила техники безопасности, действующие на предприятии, эксплуатирующем трансформаторы.

При подготовке трансформаторов к монтажу, эксплуатации и при проведении технического обслуживания (электрических испытаний и других работ) должны выполняться «Правила устройства электроустановок», «Правила технической эксплуатации электроустановок потребителей», «Правила технической эксплуатации электрических станций и сетей Российской Федерации», «Правила по охране труда при эксплуатации электроустановок» и требования, предусмотренные настоящим разделом РЭ.

- 2.2 Запрещается производить переключения во вторичной цепи трансформаторов без снятия напряжения в первичной цепи.
- 2.3 Необходимость заземления вторичных обмоток определяется потребителем в соответствии со схемой вторичных присоединений трансформаторов.

2.4 Металлическая оболочка и броня кабеля должны быть заземлены.

3 Описание и работа трансформаторов

- 3.1 Назначение трансформаторов
- 3.1.1 Трансформаторы подразделяются на трансформаторы тока нулевой последовательности, передающие сигнал о замыканиях на землю путем трансформации возникших при этом токов нулевой последовательности, и на трансформаторы тока для защиты, предназначенные для передачи сигнала приборам защиты, автоматики, сигнализации и управления в электрических цепях переменного тока частотой 50 Гц с номинальным напряжением до 0,66 кВ, включительно. Трансформаторы устанавливаются на кабель.

Допускается использование трансформаторов в электрических цепях на номинальное напряжения выше 0,66 кВ, при условии, что главная изоляция между токопроводящими жилами кабеля и вторичной обмоткой трансформаторов обеспечивается собственной изоляцией кабеля.

- 3.1.2 Трансформаторы предназначены для работы в электроустановках и являются комплектующими изделиями.
- 3.1.3 Трансформаторы имеют климатическое исполнение «У» категории размещения 2 ГОСТ 15150 и предназначены для работы в следующих условиях:
- высота установки над уровнем моря не более 1000 м. По согласованию с потребителем возможно изготовление трансформаторов для работы на высоте свыше 1000 м;
- температура окружающей среды при эксплуатации, с учетом перегрева воздуха внутри КРУ, 50 °C;
 - относительная влажность воздуха -100 % при 25 °C;
 - давление воздуха согласно ГОСТ 15543.1;
- окружающая среда невзрывоопасная, не содержащая пыли, агрессивных газов и паров в концентрациях, разрушающих покрытия, металлы и изоляцию (атмосфера типа II по ГОСТ 15150);
 - рабочее положение трансформаторов в пространстве любое;
- изоляция трансформаторов литая, класса нагревостойкости «В» по ГОСТ 8865 и класса воспламеняемости FH (ПГ) 1 по ГОСТ 28779;
 - трансформатор соответствует группе условий эксплуатации М6 по ГОСТ 30631;
- трансформаторы сейсмостойки при воздействии землетрясений интенсивностью 8 баллов по MSK-64 при уровне установки над нулевой отметкой до 70 м;

- трансформаторы, предназначенные для поставки на AC, соответствуют классу безопасности 3H по HП-001-15 и II категории сейсмостойкости по HП-031-01;
- трансформаторы соответствуют требованиям устойчивости к электромагнитным помехам при воздействии магнитного поля промышленной частоты по ГОСТ Р 50648, установленным для группы исполнения IV по ГОСТ 32137;
- трансформаторы удовлетворяют нормам индустриальных радиопомех, установленным в ГОСТ Р 51318.11, класс A, группа 1.
 - 3.2 Комплект поставки:

Трансформатор, шт. -1;

Эксплуатационные документы, экз.:

 этикетка
 -1;

 паспорт*
 -1;

руководство по эксплуатации (РЭ) — 1.

Примечания

- 1 * Для трансформаторов, предназначенных для поставок на АЭС, и трансформаторов ТЗРЛ для защиты.
- 2 При поставке партии трансформаторов в один адрес, по согласованию с заказчиком, количество экземпляров РЭ может быть уменьшено до одного экземпляра, но должно быть не менее трех экземпляров на партию трансформаторов в пятьдесят штук.
 - 3.3 Технические характеристики
- 3.3.1 Основные технические характеристики трансформаторов тока нулевой последовательности приведены в таблицах 1 и 2.

Таблица 1

Наименование параметра	Значение
Номинальное напряжение, кВ	0,66
Номинальная частота, Гц	50
Коэффициент трансформации для работы с реле: ТЗРЛ-70, ТЗРЛ-100, ТЗРЛ-125, ТЗРЛ-180 ТЗРЛ-150, ТЗРЛ-200	30/1 60/1
Коэффициент трансформации для работы с микропроцессорной защитой типа SEPAM: вся серия ТЗРЛ	470/1
Испытательное одноминутное напряжение, кВ	3
Односекундный ток термической стойкости, А, при ко-эффициенте трансформации:	
30/1; 60/1 470/1	140 20

Примечание - Возможно изготовление с другим коэффициентом трансформации.

Таблица 2

		ервичному току,				
	Исполь-	Т				
Тип реле	зуемая	Ток	при работе	при последова-	при параллель-	
шкала		устав-	одного	тельном соедине-	ном соединении	
	реле, А	ки, А	трансфор- нии двух транс-		двух транс-	
			матора	форматоров	форматоров	
PT-140/0,2	0,1 - 0,2	0,1	25	30	45	
PT3-51	0,02 - 0,1	0,03	3	4	4,5	

Примечание - Значение чувствительности защиты приведено при параллельном соединении обмоток реле и сопротивлении соединительных проводов не более 1 Ом.

3.3.2 Основные параметры трансформаторов для защиты приведены в таблицах 3 и 4.

Таблица 3

1000000							
	Значение						
Наименование параметра	ТЗРЛ-70	ТЗРЛ-100,	ТЗРЛ-150	ТЗРЛ-200			
Harman van van van van van van van van van v		ТЗРЛ-125 ТЗРЛ-130 ТЗРЛ-130 О,66					
Номинальное напряжение, кВ							
Наибольшее рабочее напряжение, кВ		0,					
Номинальная частота, Гц			0				
Номинальный первичный ток, А	600;	750; 800; 1000	<u>); 1200; 1500; 2</u>	2000			
Наибольший рабочий первичный	630.	800; 800; 1000	· 1250· 1600· ′	2000			
ток, А	050,		, 1230, 1000, 2	2000			
Номинальный вторичный ток, А		1	[
Количество вторичных обмоток, шт.		1	[
Номинальная вторичная нагрузка,							
при cos φ = 0,8 (нагрузка индук-	3; 5; 10; 15; 20; 25; 30						
тивно - активная)							
Класс точности по ГОСТ 7746		5P;	10P				
Односекундный ток термической		8	0				
стойкости, А, не менее		o	U				
Номинальная предельная кратность							
вторичной обмотки*, не менее, при							
номинальном первичном токе, А:							
600	9	4	10	5			
750	11	5	10	6			
800	11 6 8 7						
1000	11 7 8 8						
1200	13 8 9 9						
1500	15	9	7	11			
2000	17	11	8	13			

Примечания

- 1 * Значение номинальной предельной кратности вторичной обмотки приведено при номинальной вторичной нагрузке $30~\mathrm{B}\cdot\mathrm{A}$.
 - 2 Значение номинальной вторичной нагрузки уточняется в заказе.
- 3 Допускается кратковременное, не более двух часов в неделю, повышение значения номинального первичного тока на 20% по отношению к наибольшему рабочему первичному току.

Таблица 4 - Расчетные значения сопротивлений вторичной обмотки постоянному току, приведенные к температуре $20~^{\circ}\mathrm{C}$

Номинальный Сопротивление вторичной обмотки постоянному току, С								
первичный ток, А	ТЗРЛ-70	ТЗРЛ-100	ТЗРЛ-125	ТЗРЛ-150	ТЗРЛ-200			
600	3,9	2,9	3,17	4,3	2,9			
750	4,8	3,7	4,0	5,1	3,7			
800	5,2	3,8	4,2	5,5	4,0			
1000	5,8	5,8	5,4	6,8	5,0			
1200	6,9	5,8	6,4	8,2	6,0			
1500	8,2	8,6	8,1	9,8	7,5			
2000	10,8	9,1	11,0	13,3	10,2			

3.3.3 Расчетные значения номинальной предельной кратности вторичной обмотки для защиты в зависимости от номинальной вторичной нагрузки приведены в приложении A.

3.4 Устройство

- 3.4.1 Трансформаторы выполнены в виде опорной разъемной конструкции. Роль первичной обмотки выполняет кабель, пропущенный в окно трансформаторов.
- 3.4.2 Главная изоляция между токопроводящими жилами кабеля и вторичной обмоткой трансформаторов обеспечивается изоляцией кабеля.
- 3.4.3 Вторичная обмотка намотана на разрезной магнитопровод и залита эпоксидным компаундом, что обеспечивает электрическую изоляцию и защиту обмотки от проникновения влаги и механических повреждений.
 - 3.4.4 Разрезные части трансформаторов соединяются при помощи шпилек.
- 3.4.5 Габаритные, установочные, присоединительные размеры и масса трансформаторов приведены в приложениях Б и В.

3.5 Маркировка

3.5.1 Стороны трансформаторов, соответствующие линейным выводам первичной цепи, обозначены литерой «Л1» на табличке технических данных и литерой «Л2», выполненной рельефной при заливке трансформаторов в форму.

Выводы вторичной обмотки обозначены «И1» и «И2» и выполнены рельефными при заливке трансформаторов.

3.5.2 На трансформаторах имеется табличка технических данных с указанием основных технических характеристик.

4 Эксплуатация трансформаторов

- 4.1 Подготовка трансформаторов к эксплуатации.
- 4.1.1 При установке трансформаторов в электроустановки должны быть проведены:
- удаление консервирующего масла и очистка трансформаторов от пыли и грязи сухой ветошью, не оставляющей ворса или смоченной в уайт-спирите ГОСТ 3134;
- внешний осмотр для проверки отсутствия повреждений корпуса, коррозии на металлических деталях.
- 4.1.2 Должны быть проведены испытания трансформаторов, до установки в электроустановки или в составе электроустановок, в объеме, установленном предприятием-изготовителем и нормативной документацией на электроустановки.

На предприятии, эксплуатирующем электроустановку, перед пуском её в эксплуатацию, трансформаторы должны быть подвергнуты приемосдаточным испытаниям по программе, нормам и методам РД 34.45-51-300-97, СТО 34.01-23.1-001-2017 согласно «Правил устройства электроустановок» и с учетом дополнительных указаний настоящего РЭ.

4.1.3 Трансформаторы располагаются непосредственно у кабельной муфты на металлическом основании.

Необходимо отцентровать кабель в окне трансформаторов.

Снятие брони и свинцовой оболочки с кабеля в месте расположения трансформаторов категорически запрещается.

Шпильки, соединяющие разрезные части трансформатора, должны быть затянуты равномерно, с усилием не более (5 ± 2) Н·м.

Во время эксплуатации трансформаторов поверхности разъема магнитопроводов должны быть покрыты консервационным маслом К-17 ГОСТ 10877.

- 4.2 Эксплуатационные ограничения
- 4.2.1 Наибольшее рабочее напряжение, вторичная нагрузка и номинальная предельная кратность обмоток для защиты должны соответствовать значениям, указанным в таблице 3.
- 4.2.2 Наибольший рабочий ток не должен превышать значений, указанных в 3.3.2.

- 4.2.3 Качество электроэнергии должно соответствовать требованиям ГОСТ 32144.
- 4.2.4 Ток термической стойкости не должен превышать значений, указанных в таблицах 1 и 3.

5 Техническое обслуживание

- 5.1 При техническом обслуживании трансформаторов необходимо соблюдать требования раздела «Требования безопасности» настоящего РЭ.
 - 5.2 При техническом обслуживании проводятся следующие работы:
 - очистка трансформаторов от пыли и грязи;
 - внешний осмотр для проверки отсутствия повреждений корпуса;
 - проверка крепления трансформаторов;
 - проверка надёжности контактных соединений;
- испытания, объем и нормы которых установлены РД 34.45-51-300-97, СТО 34.01-23.1-001-2017.

Методы испытаний – в соответствии с «Правилами технической эксплуатации электрических станций и сетей РФ» и «Правилами технической эксплуатации электроустановок потребителей» с учетом дополнительных указаний настоящего РЭ.

- 5.3 Работы по техническому обслуживанию следует проводить в сроки, установленные для электроустановки, в которой эксплуатируются трансформаторы.
- 5.4 Указания и рекомендации по методам проведения испытаний и оценке их результатов:
- при испытании электрической прочности изоляции вторичной обмотки напряжение прикладывается между соединенными вместе выводами обмотки и соединенными вместе и заземленными крепежными втулками;
- при измерении сопротивления изоляции мегаомметр на 1000 В присоединяется к тем же точкам, что и испытательный трансформатор при проверке прочности изоляции. Значение сопротивления изоляции вторичной обмотки не менее 20 МОм;
- для измерения тока намагничивания к испытуемой вторичной обмотке при разомкнутой первичной цепи прикладывается напряжение, указанное в таблице 5. При этом должен использоваться вольтметр эффективных значений класса точности 0,5 с входным сопротивлением не менее 10 МОм.

Таблица 5 - Расчетные значения напряжения вторичной обмотки трансформаторов ТЗРЛ для защиты

Номинальный	Расчетное напряжение*, В, для исполнений трансформаторов								
первичный ток, А	ТЗРЛ - 70	ТЗРЛ - 100	ТЗРЛ - 125	ТЗРЛ-150	ТЗРЛ - 200				
600	271	132	132	343	187				
750	314	169	170	352	236				
800	317	169	205	391	238				
1000	327	209	248	444	315				
1200	333	252	293	538	361				
1500	270	260	346	483	453				
2000	211	276	457	616	569				

Примечание - * Значения расчетного напряжения приведены при номинальной вторичной нагрузке 30 В·А.

Измеренное значение тока намагничивания указывается в паспорте на изделие.

5.5 Трансформаторы неремонтопригодны. При обнаружении неисправностей, препятствующих дальнейшему использованию, трансформаторы необходимо заменить.

6 Требования к подготовке персонала

- 6.1 При установке трансформаторов в электроустановку работы должны проводиться под руководством и наблюдением ИТР рабочими, обученными выполнению необходимых операций и имеющими квалификационный разряд не ниже третьего.
- 6.2 При техническом обслуживании трансформаторов и проведении их испытаний работы должны проводиться обученным персоналом, прошедшим специальную подготовку и стажировку и допущенным к проведению испытаний в действующей электроустановке.

7 Упаковка. Хранение

- 7.1 Консервация и упаковка трансформаторов по ГОСТ 23216.
- 7.2 Хранение и складирование трансформаторов должны производиться в упаковке или без нее.
- 7.3 При хранении трансформаторов без упаковки должны быть приняты меры против возможных повреждений.
- 7.4 До установки в электроустановку трансформаторы должны храниться в условиях, соответствующих условиям хранения 2 ГОСТ 15150.
- 7.5 При хранении трансформаторов необходимо избегать резкой смены температур, особенно резкого охлаждения.

7.6 Срок защиты трансформаторов консервационной смазкой, нанесенной на предприятии-изготовителе, составляет три года.

По истечении указанного срока металлические части подлежат переконсервации с предварительным удалением старой консервационной смазки. Консервацию проводить по ГОСТ 9.014 консервационным маслом К-17 ГОСТ 10877 или другим методом из предусмотренных ГОСТ 23216.

8 Транспортирование

- 8.1 Транспортирование трансформаторов возможно любым закрытым видом транспорта в условиях транспортирования Ж согласно ГОСТ 23216.
- 8.2 Допускается транспортирование трансформаторов без упаковки в контейнерах и в закрытых автомашинах. При этом трансформаторы должны быть жестко закреплены на месте установки с зазором не менее 10 мм между трансформаторами.
- 8.3 Климатические факторы при транспортировании должны соответствовать условиям хранения 2 ГОСТ 15150.
- 8.4 Транспортирование в самолетах должно производиться в отапливаемых герметизированных отсеках.
- 8.5 Погрузку, доставку и выгрузку трансформаторов рекомендуется производить с укреплением грузовых мест в транспортных пакетах. Для пакетирования применять деревянные поддоны по ГОСТ 33757.
- 8.6 При транспортировании трансформаторов необходимо избегать резкой смены температур, особенно резкого охлаждения.

9 Утилизация

- 9.1 При транспортировании, хранении, эксплуатации, испытании и утилизации трансформаторы не представляют вреда для окружающей среды и здоровья человека.
- 9.2 После окончания срока службы трансформаторы подлежат списанию и утилизации.

- 9.3 При утилизации должны быть выполнены следующие рекомендации:
- металлические составные части трансформаторов (медь, сталь электротехническая и конструкционная), высвобожденные механическим путем, должны быть сданы на предприятия по переработке цветных и черных металлов;
- фрагменты литой или пластмассовой изоляции, картон и другие изоляционные материалы должны быть отправлены на полигон твердых бытовых отходов.

Приложение A (справочное)

Расчетные значения номинальной предельной кратности вторичной обмотки для защиты в зависимости от номинальной вторичной нагрузки

в классах точности 5Р и 10Р

Таблица А.1

Таолица А.1	TT	1	1						
	Номинальная	3	5	10	15	20	25	30	
Тип	вторичная	3	3	10	13	20	23	30	
трансформатора	нагрузка, В А								
	Коэффициент	I	Номинальная предельная кратность						
	трансформации 600/1	36	29	19	14	11	9	8	
-	750/1	35	29	20	15	12	10	9	
-	800/1	35	29	20	16	13	11	9	
ТЗРЛ-70	1000/1	36	27	20	15	13	11	9	
13171-70	1200/1	26	23	17	13	11	10	9	
_		-						7	
-	1500/1	18	16	13	11	9	<u>8</u> 5		
	2000/1	10	9	8	7	6		5	
	600/1	23	18	11	8	6	5	4	
-	750/1	25	20	13	9	7	6	5	
ТЗРЛ-100	800/1	25	20	13	10	8	6	5	
	1000/1	25	21	14	11	8	7	6	
	1200/1	25	21	15	12	10	8	6	
	1500/1	22	19	14	11	9	8	7	
	2000/1	18	16	13	11	9	8	7	
-	600/1	23	18	11	8	6	5	4	
-	750/1	25	20	13	10	8	6	5	
	800/1	25	20	14	10	8	7	6	
ТЗРЛ-125	1000/1	26	22	15	12	10	8	7	
-	1200/1	26	23	17	13	11	9	8	
_	1500/1	26	23	18	14	12	10	9	
	2000/1	24	22	18	15	13	12	11	
_	600/1	43	35	23	17	14	11	10	
_	750/1	41	34	23	18	14	12	10	
	800/1	41	34	24	19	15	13	11	
ТЗРЛ-150	1000/1	40	34	25	20	16	14	12	
	1200/1	40	35	27	22	18	16	14	
	1500/1	31	28	22	18	16	14	12	
	2000/1	28	26	22	19	17	15	14	
	600/1	30	23	14	10	8	6	5	
	750/1	32	25	16	12	10	8	7	
	800/1	33	26	17	13	10	8	7	
ТЗРЛ-200	1000/1	35	29	20	15	12	10	9	
	1200/1	36	30	22	17	14	12	10	
	1500/1	36	31	24	19	16	13	12	
	2000/1	35	31	25	21	18	16	14	

Приложение Б (обязательное)

Габаритные, установочные, присоединительные размеры и масса трансформаторов тока ТЗРЛ

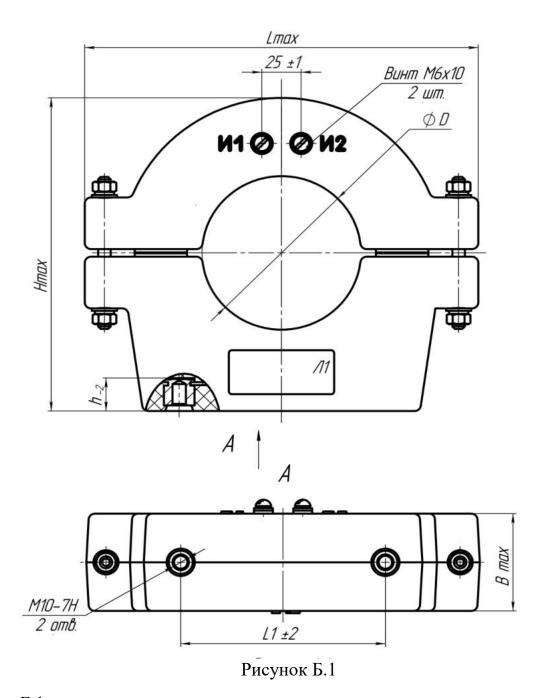


Таблица Б.1

Тип		Размеры, мм							
трансформатора	В	B h H D L L1							
ТЗРЛ-70	85	14	172	70	213	100	6,4		
ТЗРЛ-100	64	19	205	100	250	125	5,8		
ТЗРЛ-125	80	19	227	125	270	125	8,7		
ТЗРЛ-200	60	24	330	205	360	180	10,1		

Примечание - Габаритные, установочные, присоединительные размеры и масса трансформаторов ТЗРЛ-150 и ТЗРЛ-180 приведены в приложении В.

Приложение В (обязательное)

Габаритные, установочные, присоединительные размеры и масса трансформаторов тока серии ТЗРЛ для защиты

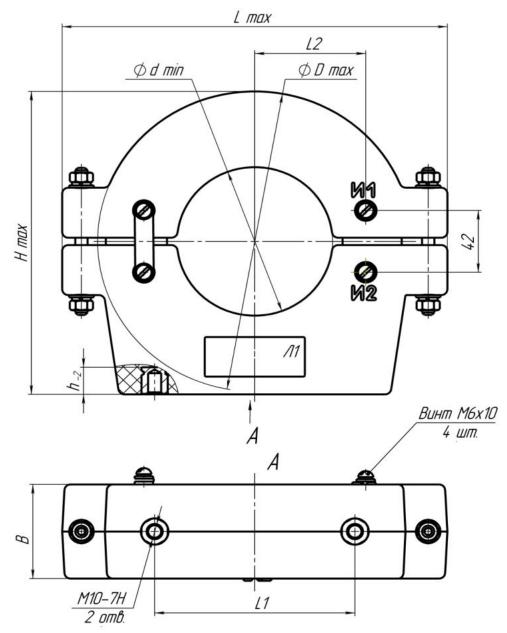


Рисунок В.1

Таблица В.1

Тип		Размеры, мм							Macca,
трансформатора	d	D	В	Н	h	L	L1	L2	КГ
ТЗРЛ-70	70	170	85	172	14	213	100	60	8,4
ТЗРЛ-100	100	204	64	206	17	250	125	72	7,3
ТЗРЛ-125	125	225	80	228	17	270	125	85	9,2
ТЗРЛ-150	150	255	85	260	16	300	180	97	12,0
ТЗРЛ-180	180	290	85	295	17	335	180	115	14,6
ТЗРЛ-200	205	316	60	325	22	360	180	127	12,5